Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’.more » « less
-
Synopsis Understanding recent population trends is critical to quantifying species vulnerability and implementing effective management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 generations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome sequencing). GONE and momi2 performed best overall, with >80% power to detect severe declines with large sample sizes. Two-sample and serial sampling schemes could accurately reconstruct changes in population size, and serial sampling was particularly valuable for making accurate inferences when genotyping errors or minor allele frequency cutoffs distort the SFS or under model mis-specification. However, sampling only contemporary individuals provided reliable inferences about contemporary size and size change using either site frequency or linkage-based methods, especially when large sample sizes or whole genomes from contemporary populations were available. These findings provide a guide for researchers designing genomics studies to evaluate recent demographic declines.more » « less
-
Abstract Adaptation within species to local environments is widespread in nature. Better understanding this local adaptation is critical to conserving biodiversity. However, conservation practices can rely on species’ trait averages or can broadly assume homogeneity across the range to inform management. Recent methodological advances for studying local adaptation provide the opportunity to fine-tune efforts for managing and conserving species. The implementation of these advances will allow us to better identify populations at greatest risk of decline because of climate change, as well as highlighting possible strategies for improving the likelihood of population persistence amid climate change. In the present article, we review recent advances in the study of local adaptation and highlight ways these tools can be applied in conservation efforts. Cutting-edge tools are available to help better identify and characterize local adaptation. Indeed, increased incorporation of local adaptation in management decisions may help meet the imminent demands of managing species amid a rapidly changing world.more » « less
-
Abstract Environmental change can expose populations to unfamiliar stressors, and maladaptive responses to those stressors may result in population declines or extirpation. Although gene flow is classically viewed as a cause of maladaptation, small and isolated populations experiencing high levels of drift and little gene flow may be constrained in their evolutionary response to environmental change. We provide a case study using the model Trinidadian guppy system that illustrates the importance of considering gene flow and genetic drift when predicting (mal)adaptive response to acute stress. We compared population genomic patterns and acute stress responses of inbred guppy populations from headwater streams either with or without a recent history of gene flow from a more diverse mainstem population. Compared to “no‐gene flow” analogues, we found that populations with recent gene flow showed higher genomic variation and increased stress tolerance—but only when exposed to a stress familiar to the mainstem population (heat shock). All headwater populations showed similar responses to a familiar stress in headwater environments (starvation) regardless of gene flow history, whereas exposure to an entirely unfamiliar stress (copper sulfate) showed population‐level variation unrelated to environment or recent evolutionary history. Our results suggest that (mal)adaptive responses to acutely stressful environments are determined in part by recent evolutionary history and in part by previous exposure. In some cases, gene flow may provide the variation needed to persist, and eventually adapt, in the face of novel stress.more » « less
-
Abstract Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal‐limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold‐water species at‐risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine‐scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site‐specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake‐stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.more » « less
An official website of the United States government
